REGULATORY APPROACHES TO REDUCE PARTICULATE MATTER EMISSIONS FROM

TRANSPORT REFRIGERATION UNITS

September 4, 2002

Overview

- Action to-date
- Background
- Summary of last TRU proposal
- New Approach/Concepts
- Regulatory development schedule
- Contacts

Action To-Date

- 5th TRU Workgroup meeting
 - Plus 4 Special TRU Electrification Workgroup meetings
- 3 Public Workshops
- Reviewed feedback
- Established Control Technology Matrix
- Provided draft TRU regulation language

3

Action To-Date (cont'd)

- Completed surveys
 - ◆ Several with TRU manufacturers
 - ◆ Several with TRU engine manufacturers
 - ◆ Emission control system manufacturers
- Completed 18 site surveys
- Collected cost data for alternative technologies
 - ◆ (e.g. electric standby (E/S), cryogenic, CNG)
- Working on demos

Background

- Mass emissions
 - ◆ Number of TRUs: 45,000 to 55,000
 - ◆ Total PM emissions
 - +>3 tons per day (>1100 tons per yr)
- Near source risk concerns
 - ◆ TRUs operating near residences
 - + Large numbers congregate: 1 to 500
 - + Hours of operation: 2 to 5000 hrs/week

Ę

Preliminary - Do Not Cite or Quote

Background (cont'd)

■ Potential Near-Source Risk

Grocery Stores

					0.	7 g/bhp-	hr							
	Hours per	Downwind Distance from the Area Source (meters)												
	week	20	40	60	80	100	120	140	160	180	200	220		
RU Operation	7									=10/million</th				
	14													
	20													
	30						10 to 100 per million							
	40	>/=	100/mil	llion										
TRI	50													

Risk in potential cancers per million

Preliminary - Do Not Cite or Quote

Background (cont'd)

■ Potential Near-Source Risk - Distribution Center

Hours	Hours	EF = 0.7 g/bhp-hr												
Per	Per	Downwind Distance (m)												
Week	Year	100	150	200	250	300	350	400	450	500	600	700	800	
100	5200	=10/</td <td>10/mi</td> <td>llion</td>								10/mi	llion			
150	7,800													
200	10,400													
250	13,000													
300	15,600						10 to 100 per million							
350	18,200													
400	20,800													
450	23,400													
500	26,000													
600	31,200													
700	36,400													
800	41,600	>/= 100 per million												
900	46,800													
1000	52,000													
1100	57,200													
1200	62,400													
1300	67,600													
1400	72,800													
1500	78,000												1	

Risk in potential cancers per million

Last TRU Proposal Summary

■ Key Elements

- ◆ TRU Manufacturers
 - + New TRUs to be equipped with electric standby (E/S)
- ◆ Fleet Owners/Operators Phased reqmnts
 - + Replace in-use TRUs with new TRUs equipped with E/S,
 - Retrofit in-use TRUs to reduce PM emissions by 75% or to less than 0.15 g/bhp-hr, or
 - ◆ Retrofit in-use TRUs with E/S
- ◆ Facility requirements
 - + Provide electric power infrastructure
 - ◆ Prohibit diesel TRU operations at facility, if E/S-equipped

Concerns Over Last Proposal

- Infrastructure required
- Availability of retrofit technology
- Cost
- Long term investment decisions
- Multiple, successive regulatory impacts
 - ◆ On-road & offroad standards
 - ◆ HACCP regulations

9

New Approach

- Focus on both near-source and mass reductions
- Performance-based approach to provide flexibility
- Make the long-term regulatory goal clear

Key Concepts

■ Engine Manufacturers

- Progressively more stringent TRU engine standards
- ◆ Examples
 - + 0.30 g/bhp-hr by 2005 or earlier
 - + 0.10 g/bhp-hr by 2010 or earlier
 - + 0.01 g/bhp-hr by 2015 or earlier

11

Key Concepts (cont'd)

■ TRU Owner/Operators

- Progressively more stringent in-use requirements
- ◆ Examples: Lower in-use emissions every 10 years by
 - → Retrofit
 - → Repower
 - + Replace

Key Concepts (cont'd)

■ TRU Manufacturers

- ◆ Provide options to customers
- ◆ Examples
 - + Cleaner engines
 - → Verified retrofit options
 - + E/S with more capacity
 - + Cryogenic systems
 - ◆ Alternative fueled TRU engines
 - ◆ Non-diesel-fueled TRU engines
 - + Advanced technology

13

Key Concepts (cont'd)

■ Facilities

- Provide needed infrastructure in stepwise fashion
 - + Electric drive
 - ◆ Cryogenic temperature control
 - + Alternative fuels
 - ◆ Advanced technologies

Key Concepts (cont'd)

■ Example

 Allow decreasing numbers of diesel TRUs to operate while at facility

Schedule

- Next Public Workshop: Mid-November
- Board Hearing: Mid-2003
- Comments via email by October 1, 2002

Contacts

- Tony Andreoni, Manager, PES (916) 324-6021 (tandreon@arb.ca.gov)
- Rod Hill, Air Resources Engineer (916) 323-0440 (rhill@arb.ca.gov)
- Fax: (916) 327-5621
- http://www.arb.ca.gov/diesel/dieselrrp.htm